Publications

Turbulence from tropical instability waves in the equatorial cold tongues: quantification from multiyear moored records. J. Geophys. Res. 10.1029/2023JC020646. (**S. Iyer and J.N. Moum)

Blocked drainpipes and smoking chimneys – discoveries of new near-inertial phenomena in anticyclones. Oceanography, 10.5670/oceanog.2024.304. (L.N. Thomas, J.N. Moum, L. Rainville, J. Hilditch and E. Kunze)

Near-inertial energy variability in a strong mesoscale eddy field in the Iceland Basin. Oceanography, 10.5670/oceanog.2024.302. (G. Voet, A.F. Waterhouse, A. Savage, E. Kunze, J.A. MacKinnon, M.H. Alford, J.A. Colosi, H. Simmons, T. Klenz, S.M. Kelly and J.N. Moum)

Deep cycle turbulence in the upper Pacific Equatorial Ocean: characterization by LES and heat flux parameterization. J. Phys. Oceanogr., 10.1175/JPO-D-23-0015.1, 2024 (H. Pham, S. Sarkar, W.D. Smyth, J.N. Moum and S.J. Warner)

Wind dependencies of deep cycle turbulence in the equatorial cold tongues. J. Phys. Oceanogr., DOI: 10.1175/JPO-D-22-0203.1, 2023 (J.N. Moum, W.D. Smyth, K.G. Hughes, D. Cherian, S.J. Warner, B. Bourles, P. Brandt and M. Dengler)

Prolonged thermocline warming by near-inertial internal waves in the wake of tropical cyclones. Proc. Nat. Acad. Sci. 10.1073/pnas.2301664120, 2023. (*Noel G. Brizuela, Matthew H. Alford, Shang-Ping Xie, Gunnar Voet, Sally J. Warner, Kenneth G. Hughes and James N. Moum)

Damping of inertial motions through the radiation of near-inertial waves in a dipole vortex in the Iceland Basin. J. Phys. Oceanogr. 10.1175/JPO-D-22-0202.1, 2023. (L.N. Thomas, E.D. Skyllingstad, L. Rainville, V. Hormann, L. Centurioni, J.N. Moum, O. Asselin and C.M. Lee)

Flippin’ XSOLO: an upper ocean autonomous turbulence profiler. J. Atmos. Ocean. Technol. 10.1175/JTECH-D-22-0067.1 , 2023. (J.N. Moum, D.L. Rudnick, E.L. Shroyer, K.G. Hughes, B. Reineman, J.T. Sherman, K. Grindley, P. Vutukur, C. Van Appledorn, K. Latham, A.J. Moulin and T.M.S. Johnston)

A vorticity-divergence view of the ocean response to tropical cyclones: insights from Super Typhoon Mangkhut. J. Geophys. Res., https://doi.org/10.1029/2022JC019400, 2023. (*Noel G. Brizuela, T. M. Shaun Johnston, Matthew H. Alford, Olivier Asselin, Daniel Rudnick, James N. Moum and Elizabeth J. Thompson)

The coupling between tropical meteorology, aerosol science, convection and the energy budget during the Clouds, Aerosol Monsoon Processes Philippines Experiment (CAMP2Ex). Bull. Am. Met. Soc., https://doi.org/10.1175/BAMS-D-21-0285.1, 2023. (Experiment PIs, including J.N. Moum)

A turbulence data reduction scheme for autonomous and expendable profiling floats. Ocean Science, 10.5194/os-19-193-2023, 2023. (K.G. Hughes, J.N. Moum, and D.L. Rudnick)

Tropical instability waves and wind-forced cross-equatorial flow in the central Atlantic Ocean. Geophys. Res. Lett., 10.1029/2022GL099325, 2022. (F. Heukamp, P. Brandt, M. Dengler, F.P. Tuchen, M.J. McPhaden and J.N. Moum)

Deep cycle turbulence in the Atlantic and Pacific cold tongues. Geophys. Res. Lett., https://doi.org/10.1029/2021GL097345, 2022 (J.N. Moum, K.G. Hughes, E.L. Shroyer, W.D. Smyth, D. Cherian, S.J. Warner, B. Bourles, P. Brandt, M. Dengler)

Mixing in equatorial oceans. Ocean Mixing, eds. M. Meredith and A. Naveiro-Garabato, Elsevier, https://doi.org/10.1016/B978-0-12-821512-8.00017-7, 2022 (J.N. Moum, A. Natarov, K.J. Richards, E.L. Shroyer and W.D. Smyth)

Physics-aware deep learning parameterization of ocean mixing improves climate simulation. National Science Review, https://doi.org/10.1093/nsr/nwac044, 2022 (Yuchao Zhu, Rong-Hua Zhang, J.N. Moum, Fan Wang, Xiaofeng Li, and Delei Li) [Commentary https://doi.org/10.1093/nsr/nwac092]

Simulation and scaling of the vertical heat transport in deep-cycle turbulence through the equatorial Pacific cold tongue. J. Phys. Oceanogr. https://doi.org/10.1175/JPO-D-21-0153.1, 2022 (D.B. Whitt, D.A. Cherian, R.M. Holmes, S.D. Bachman, R-C. Lien, W.G. Large and J.N. Moum)

Saturation of the internal tide over the inner continental shelf. Pt I: Observations. J. Phys. Oceanogr. https://doi.org/10.1175/JPO-D-20-0264.1, 2021 (J Becherer, J.N. Moum, J. Calantoni, J.A. Colosi, J.A. Barth, J.A. Lerczak, J.M. McSweeney, J.A. MacKinnon and A.F. Waterhouse)

Saturation of the internal tide over the inner continental shelf. Pt II: Parameterization. J. Phys. Oceanogr. https://doi.org/10.1175/JPO-D-21-0047.1, 2021 (J Becherer, J.N. Moum, J. Calantoni, J.A. Colosi, J.A. Barth, J.A. Lerczak, J.M. McSweeney, J.A. MacKinnon and A.F. Waterhouse)

Freshwater lens fronts propagating as buoyant gravity currents in the equatorial Indian Ocean. J. Geophys. Res. Oceans, 126, e2021JC017186, https://doi.org/10.1029/2021JC017186, 2021. (*A.J. Moulin, J.N. Moum, E.L. Shroyer and M. Hoecker-Martinez)

What factors govern the deep cycle? Proxies for equatorial turbulence. J. Phys. Oceanogr. https://doi.org/10.1175/JPO-D-20-0236.1, 2021 (W. D. Smyth, S. J. Warner, J. N. Moum, H. Pham, S. Sarkar)

Stratified shear instabilities in diurnal warm layers. J. Phys. Oceanogr. https://doi.org/10.1175/JPO-D-20-0300.1, 2021 (K.G. Hughes, J.N. Moum, E.L. Shroyer and W.D. Smyth)

Variations in ocean mixing from seconds to years, Ann. Rev. Mar. Sci., 13:1, 201-226, doi: https://doi.org/10.1146/annurev-marine-031920-122846 2021 (J.N. Moum).

Near-inertial wave propagation in the wake of Super Typhoon Mangkhut: Measurements from a profiling float array. J. Geophys. Res. Oceans., doi:10.1029/2020JC016749 2021 (T.M. Shaun Johnston, Shuguang Wang, Chia-Ying Lee, James N. Moum, Daniel L. Rudnick, and Adam Sobel).

The Inner-Shelf Dynamics Experiment, Bulletin Am. Met. Soc., 1-77, doi: https://doi.org/10.1175/BAMS-D-19-0281.1, 2021 (N. Kumar, J.A. Lerczak, et al, … including J.N. Moum, J. Becherer)

Heat transport through diurnal warm layers, J. Phys. Oceanogr., 50(10), 2885-2905, doi: https://doi.org/10.1175/JPO-D-20-0079.1, 2020 (K.G. Hughes, J.N. Moum and E.L Shroyer).

Advection by the North Equatorial Current of a Cold Wake due to Multiple Typhoons in the Western Pacific: Measurements From a Profiling Float Array,  J. Geophys. Res. Oceans., 125, e2019JC015534, doi: https://doi.org/10.1029/2019JC015534, 2020 (T.M.S. Johnston, D.L. Rudnick, N. Brizuela and J.N. Moum).

Turbulence asymmetries in bottom boundary layer velocity pulses associated with onshore-propagating nonlinear internal waves., J. Phys. Oceanogr., 50(8), 2373-2391, doi: https://doi.org/10.1175/JPO-D-19-0178.1, 2020 (J. Becherer, J.N. Moum, J.A. Colosi, J.A. Lerczak and J.M. McSweeney).

Evolution of the velocity structure in the diurnal warm layer, J. Phys. Oceanogr., 50(3), 615-631, doi: https://doi.org/10.1175/JPO-D-19-0207.1, 2020 (K.G. Hughes, J.N. Moum and E.L Shroyer).

The seasonal cycle of upper ocean mixing at 8N in the Bay of Bengal, J. Phys. Oceanogr., 50(2), 323-342, doi: https://doi.org/10.1175/JPO-D-19-0114.1, 2020 (D.A. Cherian, E.L. Shroyer, H. Wijesekera and J.N. Moum).

Feedback of mixing to ENSO phase change, Geophys. Res. Lett., 46, 13920– 13927, doi:https://doi.org/10.1029/2019GL085415, 2019 (S.J. Warner and J.N. Moum).  AGU Editor’s Highlight.

Self-organized criticality in geophysical turbulence, Nature Scientific Reports, 9, 3747, doi: https://doi.org/10.1038/s41598-019-39869-w, 2019 (W.D. Smyth, J.D. Nash and J.N. Moum).

Seasonality and buoyancy suppression of turbulence in the Bay of Bengal, Geophys. Res. Lett., 46, 4346– 4355, doi: https://doi.org/10.1029/2018GL081577, 2019 (R. Thakur, E.L. Shroyer, R. Govindarajan, J.T. Farrar, R.A. Weller and J.N. Moum).

On the future of Argo: A global, full-depth, multi-disciplinary array. Frontiers in Marine Science, doi:10.3389/fmars.2019.00439 (Roemmich, …, many authors incl. J.N. Moum, J.D. Nash, E.L. Shroyer).

Variations of equatorial shear, stratification, and turbulence within a tropical instability wave cycle, J. Geophys. Res. Oceans., 124, 1858– 1875, doi: https://doi.org/10.1029/2018JC014480, 2019 (R. Inoue, R-C. Lien, J.N. Moum, R.C. Perez and M.C. Gregg).

Wind limits on rain layers and diurnal warm layers, J. Geophys. Res., 124, 897– 924, doi: https://doi.org/10.1029/2018JC014130, 2018 (E.J. Thompson, J.N. Moum, S.A. Rutledge and C.W. Fairall).

Evolution of turbulence in the diurnal warm layer, J. Phys. Oceanogr., 48(2), 383-396, doi: https://doi.org/10.1175/JPO-D-17-0170.1, 2018 (A.J. Moulin, J.N. Moum and E.L. Shroyer).

Buoyant gravity currents released from tropical instability waves, J. Phys. Oceanogr., 48, 361-382, doi: https://doi.org/10.1175/JPO-D-17-0144.1, 2018. (S.J. Warner, R. M. Holmes, E.H. McHugh Hawkins, M. Hoecker-Martinez, A. Savage and J.N. Moum).

The role of turbulence in redistributing upper ocean heat, freshwater and momentum in response to the MJO in the equatorial Indian Ocean, J. Phys. Oceanogr. 48, 197-220, doi: https://doi.org/10.1175/JPO-D-17-0146.1, 2018 (K. Pujiana, J. N. Moum, and W. D. Smyth).

An Efficient Scheme for Onboard Reduction of Moored χpod Data, J. Atmos. Oceanic Technol., 34, 2533-2546, doi: https://doi.org/10.1175/JTECH-D-17-0118.1, 2017 (J. Becherer and J.N. Moum).

Seasonality of deep cycle turbulence in the eastern equatorial Pacific., J. Phys. Oceanogr., 47, 2189-2209, doi: https://doi.org/10.1175/JPO-D-17-0008.1, 2017 (H. Pham, W.D. Smyth, S. Sarkar and J.N. Moum).

Pulsating stratified turbulence in the upper equatorial oceans, J. Fluid Mech., 822, 327-341, doi: https://doi.org/10.1017/jfm.2017.283, 2017 (W.D. Smyth, H. Pham, J.N. Moum and S. Sarkar). 

Turbulent large-eddy momentum flux divergence during high wind events, J. Phys. Oceanogr., 47, 1493-1517, doi: https://doi.org/10.1175/JPO-D-16-0286.1, 2017 (H.W. Wijesekera, D.W. Wang, E. Jarowsz, W.J. Teague, W.S. Pegau and J.N. Moum).

Flow variability within the Alaska Coastal Current in winter, J. Geophys. Res., 122, doi: 10.1002/2016JC012102, 2017 (E. Jarowz, D. Wang, H. Wijesekera, W.S. Pegau and J.N. Moum).

Ocean feedback to pulses of the Madden–Julian Oscillation in the equatorial Indian Ocean, Nature Commun. 7, 13203, doi: https://doi.org/10.1038/ncomms13203, 2016 (J.N. Moum. K. Pujiana, R-C. Lien and W.D. Smyth).

Evidence for seafloor-intensified mixing by surface-generated equatorial waves, Geophys. Res. Lett., 43, 1202-1210, doi: https://doi.org/10.1002/2015GL066472, 2016 (R.M. Holmes, J.N. Moum and L.N. Thomas). Stanford Report 22 Feb 2016.

Controls on turbulent mixing in a strongly stratified and sheared tidal river plume, J. Phys. Oceanogr., 46, 2373-2388, doi: https://doi.org/10.1175/JPO-D-15-0156.1, 2016 (J.T. Jurisa, J.D. Nash, J.N. Moum and L.F. Kilcher).

Horizontal variability of high-frequency nonlinear internal waves in Massachusetts Bay detected by an array of seafloor pressure sensors, J. Geophys. Res., 121, 5587-5607, https://doi.org/10.1002/2016JC011866, 2016 (J.A. Thomas, JA. Lerczak and J.N. Moum).

Modification of upper-ocean temperature structure by subsurface mixing in the presence of strong salinity stratification, Oceanography, 29(2):62–71, https://doi.org/10.5670/oceanog.2016.39, 2016 (E.L. Shroyer, D.L. Rudnick, J.T. Farrar, B. Lim, S.K. Venayagamoorthy, L.C. St. Laurent, A. Garanaik, and J.N. Moum).

Monsoon mixing cycles in the Bay of Bengal: A year-long subsurface mixing record, Oceanography, 29(2):158–169, https://doi.org/10.5670/oceanog.2016.48, 2016 (S.J. Warner, J. Becherer, K. Pujiana, E.L. Shroyer, M. Ravichandran, V.P. Thangaprakash and J.N. Moum).

Observations of currents over the deep southern Bay of Bengal with a little luck, Oceanography, 29(2):112–123, 2016.44, doi:https://doi.org/10.5670/oceanog.2016.44, 2016 (H.W. Wijesekera, W.J. Teague, E. Jarosz, D.W. Wang, T.G. Jensen, S.U.P. Jinadasa, H.J.S. Fernando, L. Centurioni, Z.R. Hallock, E.L. Shroyer, and J.N. Moum). 

Energetics of bottom Ekman layers during buoyancy shutdown, J. Phys. Oceanogr., 45, 3099-3117, doi: https://doi.org/10.1175/JPO-D-15-0041.1, 2015 (L. Umlauf, W.D. Smyth and J.N. Moum).

Biases in Thorpe scale estimation of turbulence dissipation. Part I: Assessments from large overturns in oceanographic data, J. Phys. Oceanogr., 45, 2497-2521, doi: https://doi.org/10.1175/JPO-D-14-0128.1, 2015 (B.D. Mater, S.K. Venayagamoorthy, L. St. Laurent and J.N. Moum).

Ocean speed and turbulence measurements using pitot-static tubes on moorings, J. Atmos. Oceanic Technol., 32, 1400-1413, doi: https://doi.org/10.1175/JTECH-D-14-00158.1, 2015 (J.N. Moum).

Distinguishing ichthyogenic turbulence from geophysical turbulence, J. Geophys. Res., 120, 3792– 3804, doi: https://doi.org/10.1002/2014JC010659, 2015 (K. Pujiana, J.N. Moum, W.D. Smyth and S.J. Warner).

The formation and fate of internal waves in the South China Sea, Nature, 521, 65-69, doi: https://doi.org/10.1038/nature14399, 2015 (Experiment PIs incl. J.D. Nash, J.N. Moum).

Energy and heat fluxes due to vertically propagating Yanai waves observed in the equatorial Indian Ocean, J. Geophys. Res., 120, 1– 15, doi: https://doi.org/10.1002/2014JC010152, 2015 (W.D. Smyth, T.S. Durland and J.N. Moum).

Air-sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean, Bull.Am.Met.Soc., 95, 1185-1199https://doi.org/10.1175/BAMS-D-12-00225.1, 2014 (J.N. Moum, S.P. de Szoeke, W.D. Smyth, J.B. Edson, H.L. DeWitt, A.J. Moulin, E.J. Thompson, C.J. Zappa, S.A. Rutledge, R.H. Johnson and C.W. Fairall).

Measurements of form and frictional drags over a rough topographic bank, J. Phys. Oceanogr., 44(9), 2409-2432, doi: https://doi.org/10.1175/JPO-D-13-0230.1, 2014 (H.W. Wijesekera, E. Jarosz, W.J. Teague, W.D. Wang, D.B. Fribance, J.N. Moum and S.J. Warner).

Stratification and mixing regimes in biological thin layers over the mid-Atlantic Bight, Limnol. Oceanogr., 59(4), 1349-1363, doi: https://doi.org/10.4319/lo.2014.59.4.1349, 2014 (E.L. Shroyer, J.D. Nash, K.J. Benoit-Bird and J.N. Moum).

Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden-Julian Oscillations, J. Geophys. Res., 118, 4945–4964, doi: https://doi.org/10.1002/jgrc.20395, 2013 (Y. Li, W. Han, T. Shinoda, C. Wang, R-C. Lien, J. N. Moum and J-W. Wang).

The geography of semidiurnal mode-1 internal tide energy loss, Geophys. Res. Lett, 40, doi: https://doi.org/10.1002/grl.50872, 2013 (S.M. Kelly, N.L. Jones, J.D. Nash and A.F. Waterhouse).

Marginal instability and deep cycle mixing in the eastern equatorial Pacific Ocean, Geophys. Res. Lett., 40, 6181-6185, doi: https://doi.org/10.1002/2013GL058403, 2013 (W.D. Smyth and J.N. Moum).

Diurnal shear instability, the descent of the surface shear layer and the deep cycle of equatorial turbulence, J. Phys. Oceanogr., 43, 2432-2455, doi: https://doi.org/10.1175/JPO-D-13-089.1, 2013 (W.D. Smyth, J.N. Moum, L. Li and S.A. Thorpe).

Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature, 500, 64-67, doi: https://doi.org/10.1038/nature12363, 2013 (J.N. Moum, A. Perlin, J.D. Nash and M.J. McPhaden). [News & Views: Unequal equinoxes]

Surface wave effects on high-frequency currents over a shelf edge bank, J. Phys. Oceanogr., 43, 1627-1647, doi: https://doi.org/10.1175/JPO-D-12-0197.1, 2013 (H.J. Wijesekera, D.W. Wang, W.J. Teague, E. Jarosz, W.E. Rogers, D.B. Fribance and J.N. Moum).

Measurement of tidal form drag using seafloor pressure sensors, J. Phys. Oceanogr., 43, 1150-1172, doi: https://doi.org/10.1175/JPO-D-12-0163.1, 2013 (S.J. Warner, P. MacCready, J.N. Moum and J.D. Nash).

Modulation of equatorial turbulence by a tropical instability wave, J. Geophys. Res., 117, C10009, doi: https://doi.org/10.1029/2011JC007767, 2012 (R. Inoue, R.-C. Lien and J.N. Moum).

The unpredictable nature of internal tides on the continental shelf, J. Phys. Oc., 42(11), 1981-2000, doi: https://doi.org/10.1175/JPO-D-12-028.1, 2012 (J.D. Nash, S.M. Kelly, E.L. Shroyer, J.N. Moum and T.F. Duda).

Turbulence and high-frequency variability in a deep gravity current outflow, Geophys. Res. Lett, 39, L18611, doi: https://doi.org/10.1029/2012GL052899, 2012 (J.D. Nash, H. Peters, S.M. Kelly, J.L. Pelegri, M Emelianov & M. Gasser).

Ocean mixing by Kelvin-Helmoltz instability. Oceanography, 25(2) 140-149, doi: https://doi.org/10.5670/oceanog.2012.49, 2012 (W.D. Smyth and J.N. Moum).

Are any coastal internal tides predictable? Oceanography, 25(2) 80-95, doi: https://doi.org/10.5670/oceanog.2012.44, 2012 (J.D. Nash, E.L. Shroyer, S.M. Kelly, M.E. Inall, T.F. Duda, M.D. Levine, N.L. Jones, and R.C. Musgrave).

The direct breaking of internal waves at steep topography, Oceanography, 25(2) 150-159, doi: https://doi.org/10.5670/oceanog.2012.50, 2012 (J.M. Klymak, S. Legg, M.H. Alford, M. Buijsman, R. Pinkel, and J.D. Nash).

The role of turbulence stress divergence in decelerating a river plume, J. Geophys. Res., 117, C05032, doi:10.1029/2011JC007398, doi: https://doi.org/10.1029/2011JC007398, 2012 (L.F. Kilcher, J.D. Nash & J.N.Moum).

Comparison of Thermal Variance Dissipation Rates from Moored and Profiling Instruments at the Equator, J. Atmos. Oceanic Technol., 29, 1347–1362, doi: https://doi.org/10.1175/JTECH-D-12-00019.1, 2012 (A. Perlin and J. N. Moum).

Trapping of gyrotactic organisms in an unstable shear layer, Cont. Shelf Res., 36, 8-18, doi: https://doi.org/10.1016/j.csr.2012.01.003, 2012 (M.S. Hoecker-Martinez and W.D. Smyth).

Energy flux and dissipation in Luzon Strait: Two tales of two ridges, J. Phys. Oceanogr, 41, 2211-2222, doi: https://doi.org/10.1175/JPO-D-11-073.1, 2011 (M.H. Alford, J.A. MacKinnon, J.D. Nash, H. Simmons et.al.).

On the potential for automated realtime detection of nonlinear internal waves from seafloor pressure measurements, Appl. Ocean Res., 33, 275-285, doi: https://doi.org/10.1016/j.apor.2011.07.007, 2011 (U. Stoeber and J.N. Moum)

Narrowband high-frequency oscillations at the equator. Part I: Interpretation as shear instabilities. J. Phys. Oceanogr, 41, 397-411, https://doi.org/10.1175/2010JPO4450.1, 2011 (J.N. Moum, J.D. Nash and W.D. Smyth).

Narrowband high-frequency oscillations at the equator. Part II: Properties of shear instabilities, J. Phys. Oceanogr, 41, 412-428, doi: https://doi.org/10.1175/2010JPO4451.1, 2011, (W.D. Smyth, J.N. Moum and J.D. Nash).

Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res., 116, C03022doi: https://doi.org/10.1029/2010JC006332, 2011 (E.L. Shroyer, J.N. Moum and J.D. Nash).

Inertial-convective subrange estimates of thermal variance dissipation rate from moored temperature measurements. J.Atmos. Oceanic Technol., 27, 1950-1959, doi: https://doi.org/10.1175/2010JTECHO746.1, 2010 (Y. Zhang and J.N. Moum).

Observations of broadband acoustic backscattering from nonlinear internal waves: assessing the contribution from microstructure, IEEE J. Oceanic Eng., 35, 695-709, https://doi.org/10.1109/JOE.2010.2047814, 2010 (Andone C. Lavery, Dezhang Chu, and James N. Moum).

Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598, doi: https://doi.org/10.1029/2010GL045598, 2010 (S.M. Kelly and J.D. Nash).

Energy transformations and dissipation of nonlinear internal waves over New Jersey’s continental shelf. Nonlinear Proc. Geophys., 17, 345-360, doi: https://doi.org/10.5194/npg-17-345-2010, 2010 (E.L. Shroyer, J.N. Moum, and J.D. Nash).

Mode 2 waves on the continental shelf: Ephemeral components of the nonlinear internal wavefield. J. Geophys. Res., 115, C07001, doi: https://doi.org/10.1029/2009JC005605, 2010 (E.L. Shroyer, J.N. Moum, and J.D. Nash).

Vertical heat flux and lateral mass transport in nonlinear internal waves, Geophys. Res. Lett., 37, L08601, doi: https://doi.org/10.1029/2010GL042715, 2010 (E.L. Shroyer, J.N. Moum, and J.D. Nash).

Internal-tide energy over topography, J. Geophys. Res., 115, C06014, doi: https://doi.org/10.1029/2009JC005618, 2010 (S.M. Kelly, J. D. Nash, and E. Kunze).

Structure and dynamics of the Columbia River tidal plume front, J. Geophys. Res., 115, C05S90, doi: https://doi.org/10.1029/2009JC006066, 2010 (L. Kilcher, and J. D. Nash).

Sea surface cooling at the Equator by subsurface mixing in tropical instability waves, Nature Geoscience, 2, 761-765, doi: https://doi.org/10.1038/ngeo657, 2009 (J. N. Moum, R.-C. Lien, A. Perlin, J. D. Nash, M. C. Gregg and P. J. Wiles).

A new look at Richardson number mixing schemes for equatorial ocean modeling, J. Phys. Oceanogr., 39, 2652-2664, doi: https://doi.org/10.1175/2009JPO4133.1, 2009 (E.D. Zaron and J.N. Moum).

Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder, ICES Journal of Marine Science, doi: https://doi.org/10.1093/icesjms/fsp242, 2009 (Andone C. Lavery, Dezhang Chu, and James N. Moum).

The structure and composition of a highly-stratified, tidally-pulsed river plume, J. Geophys. Res., 114, C00B12, doi: https://doi.org/10.1029/2008JC005036, 2009 (J. D. Nash, L. Kilcher, and J. N. Moum).

Observations of polarity reversal in shoaling nonlinear internal waves, J. Phys. Oceanogr., 39, 691-701, doi: https://doi.org/10.1175/2008JPO3953.1, 2009 (E.L. Shroyer, J.N. Moum, and J.D. Nash).

Mixing measurements on an equatorial ocean mooring, J. Atmos. and Oceanic Tech., 26, 317-336, doi: https://doi.org/10.1175/2008JTECHO617.1, 2009 (J.N. Moum and J.D. Nash).

Do observations adequately resolve the natural variability of oceanic turbulence? J. Mar. Sys., 7(4), 409-417, doi: https://doi.org/10.1016/j.jmarsys.2008.10.013, 2009 (J.N. Moum and T.P. Rippeth).

Small-scale processes in the coastal ocean, Oceanography, 21(4), 22-33, doi: https://doi.org/10.5670/oceanog.2008.02, 2008 (J.N. Moum, J.D. Nash and J.M. Klymak).

Seafloor pressure measurements of nonlinear internal waves, J. Phys. Oceanogr., 38(2), 481-491, doi: https://doi.org/10.1175/2007JPO3736.1, 2008 (J.N. Moum and J.D. Nash).

Shallow Water 2006: a joint acoustic propagation/nonlinear internal wave physics experiment, Oceanography, 20(4), 156-167, doi: https://doi.org/10.5670/oceanog.2007.16, 2007 (D.J. Tang, J.N. Moum, J.F. Lynch, P. Abbot, R. Chapman, P. Dahl, T. Duda, G. Gawarkiewicz, S. Glenn, J.A. Goff, H. Graber, J. Kemp, A. Maffei, J. Nash and A. Newhall).

Dissipative losses in nonlinear internal waves propagating across the continental shelf, J. Phys. Oceanogr., 37(7), 1989-1995, doi: https://doi.org/10.1175/JPO3091.1, 2007 (J.N. Moum, D.M. Farmer, E.L. Shroyer, W.D. Smyth and L. Armi).

Energy transport by nonlinear internal waves, J. Phys. Oceanogr., 37(7), 1968-1988, doi: https://doi.org/10.1175/JPO3094.1, 2007 (J.N. Moum, J.M. Klymak, J.D. Nash, A. Perlin and W.D. Smyth).

Oceanic isopycnal slope spectra: Part I: Internal waves, J. Phys. Oceanogr., 37(5), 1215-1231, doi: https://doi.org/10.1175/JPO3073.1, 2007 (J.M. Klymak and J.N. Moum)

Oceanic isopycnal slope spectra: Part II: Turbulence, J. Phys. Oceanogr., 37(5), 1232-1245, doi: https://doi.org/10.1175/JPO3074.1, 2007 (J.M. Klymak and J.N. Moum).

Enhanced turbulence due to the superposition of internal gravity wave shear on the coastal upwelling jet, J. Geophys. Res., 112, C06024, doi: https://doi.org/10.1029/2006JC003831, 2007 (G. Avicola, J.N. Moum, A. Perlin and M.D. Levine).

Organization of stratification, turbulence and veering in bottom Ekman layers,  J. Geophys. Res., 112, C05S90, doi:10.1029/2004JC002641, 2007 (A. Perlin, J. N. Moum, J.M. Klymak, M.D. Levine, T. Boyd and M. Kosro)

Hotspots of deep ocean mixing on the Oregon continental slope, Geophys. Res. Lett., 34, L01605, doi: https://doi.org/10.1029/2006GL028170, 2007 (Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly).

Oxygen production and carbon sequestration in an upwelling coastal margin, Global Biogeochemical Cycles, 20, GB3001, doi: https://doi.org/10.1029/2005GB002517, 2006 (Hales, B., L. Karp-Boss, A. Perlin, P. A. Wheeler)

Structure of the baroclinic tide generated at Kaena Ridge, Hawaii, J. Phys. Oceanogr., 36(6), 1123-1135, doi: https://doi.org/10.1175/JPO2883.1, 2006 (Nash, J.D., E. Kunze, C.M. Lee and T.B. Sanford).

The pressure disturbance of a nonlinear internal wave train, J. Fluid Mech, 558, 153-177, doi: https://doi.org/10.1017/S0022112006000036, 2006. (J.N. Moum and W.D. Smyth)

An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1148-1164, doi: https://doi.org/10.1175/JPO2885.1, 2006 (Klymak, J.M., J.N. Moum, J.D. Nash, E. Kunze, J.B. Girton, G.S. Carter, C.M. Lee, T.B. Sanford, and M.C. Gregg).

River plumes as a source of large-amplitude internal waves in the coastal ocean, Nature, 437, 400-403, doi: https://doi.org/10.1038/nature03936, 2005 (J.D. Nash and J.N. Moum).

Differential diffusion in breaking Kelvin-Helmholtz billows, J. Phys. Oceanogr., 35, 1004-1022, doi: https://doi.org/10.1175/JPO2739.1, 2005 (W.D. Smyth, J.D. Nash and J.N. Moum).

Estimating internal wave energy fluxes in the ocean,  J. Atmos. and Oceanic Tech., 22(10), 1551-1570, doi: https://doi.org/10.1175/JTECH1784.1, 2005 (J.D. Nash, M.H. Alford and E. Kunze).

Irreversible vertical nitrate fluxes due to turbulent mixing in a coastal upwelling system, J. Geophys. Res., 110, C10S11, doi: https://doi.org/10.1029/2004JC002685, 2005 (B. Hales, J. Moum, P. Covert and A. Perlin).

Response of the bottom boundary layer over a sloping shelf to variations in alongshore wind, J. Geophys. Res., 110, C10S09, doi: https://doi.org/10.1029/2004JC002500,2005 (A. Perlin, J. N. Moum and J.M. Klymak).

A modified law-of-the-wall to describe velocity profiles in the bottom boundary layer, J. Geophys. Res., 110, C10S10, doi: https://doi.org/10.1029/2004JC002310, 2005 (A. Perlin, J.N. Moum, J.M. Klymak, M.D. Levine, T. Boyd and P.M. Kosro).

Internal tide reflection and turbulent mixing on the continental slope, J. Phys. Oceanogr. 34(5), 1117-1134, doi: https://doi.org/10.1175/1520-0485(2004)034%3C1117:ITRATM%3E2.0.CO;2, 2004 (J.D. Nash, E. Kunze, J. M. Toole and R. W. Schmitt).

An examination of the radiative and dissipative properties of deep ocean internal tides, Deep Sea Research II , 51 , 3029-3042, doi: https://doi.org/10.1016/j.dsr2.2004.09.008, 2004 (St. Laurent, L. C. and J. D. Nash).

Form drag and mixing due to tidal flow past a sharp point, J. Phys. Oceanogr., 34, 1297-1312, doi: https://doi.org/10.1175/1520-0485(2004)034%3C1297:FDAMDT%3E2.0.CO;2, 2004 (K. A. Edwards, P. MacCready, J.N. Moum, G. Pawlak, J. M. Klymak and A. Perlin).

Convectively-driven mixing in the bottom boundary layer, J. Phys. Oceanogr., 34, 2189-2202, doi: https://doi.org/10.1175/1520-0485(2004)034%3C2189:CDMITB%3E2.0.CO;2, 2004 (J.N. Moum, A. Perlin, J.M. Klymak, M.D. Levine, T. Boyd and P.M. Kosro).

From tides to mixing along the Hawaiian Ridge, Science, 301, 355-357, doi:
https://doi.org/10.1126/science.1085837
, 2003 (Experiment PIs including J.N. Moum).

Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf, J. Phys. Oceanogr ., 33, 2093-2112, doi: https://doi.org/10.1175/1520-0485(2003)033%3C2093:SAGOTA%3E2.0.CO;2, 2003 (J.N. Moum, D.M. Farmer, W.D. Smyth, L. Armi and S. Vagle).

Internal solitary waves of elevation advancing on a sloping shelf, Geophys. Res. Lett . 30, NO. 20, 2045, doi: https://doi.org/10.1029/2003GL017706, 2003 (J. M. Klymak and J.N. Moum).

Observations of boundary mixing over the continental slope, J. Phys. Oceanogr., 32, 2113-2130, doi: https://doi.org/10.1175/1520-0485(2002)032%3C2113:OOBMOT%3E2.0.CO;2, 2002 (J.N. Moum, D.R. Caldwell, J.D. Nash and G.D. Gunderson).

Microstructure estimates of turbulent salinity flux and the dissipation spectrum of salinity, J. Phys. Oceanogr., 32, 2312-2333, doi: https://doi.org/10.1175/1520-0485(2002)032%3C2312:MEOTSF%3E2.0.CO;2, 2002 (J.D. Nash and J.N. Moum)

Shear instability and gravity wave saturation in an asymmetrically stratified jet, Dyn. Atmos. Ocean, 35, 265-294, doi: https://doi.org/10.1016/S0377-0265(02)00013-1, 2002 (W.D. Smyth and J.N. Moum).

Evolution of the cross-shelf structure of the Oregon coastal upwelling system during COAST 2001, CoOP Newsletter, 15, 3, 2002 (Moum, J.N., A. Perlin and J.M. Klymak).

Internal hydraulic flows on the continental shelf: High drag states over a small bank, J. Geophys. Res., 106, 4593-4611, doi: https://doi.org/10.1029/1999JC000183, 2001 (J.D. Nash and J.N. Moum).

Upper ocean mixing processes, Encyclopedia of Ocean Sciences, vol. 6, Academic Press, 3093-3100, doi: doi:10.1006/rwos.2001.0156, 2001 (J.N. Moum and W.D. Smyth).

Three-dimensional turbulence, Encyclopedia of Ocean Sciences, vol. 6, Academic Press, 2947-2955, doi: https://doi.org/10.1016/B978-012374473-9.00134-X, 2001 (W.D. Smyth and J.N. Moum).

The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations, J. Phys. Oceanogr., 31, 1969-1992, doi: https://doi.org/10.1175/1520-0485(2001)031%3C1969:TEOMIT%3E2.0.CO;2, 2001 (W.D. Smyth, J.N. Moum and D.R. Caldwell).

Length scales of turbulence in stably stratified mixing layers, Phys. Fluids, 12, 1327-1342, doi: https://doi.org/10.1063/1.870385, 2000 (W.D. Smyth and J.N Moum).

Anisotropy of turbulence in stably stratified mixing layers, Phys. Fluids, 12, 1343-1362, doi: https://doi.org/10.1063/1.870386, 2000 (W.D. Smyth and J.N. Moum).

Topographically-induced drag and mixing at a small bank on the continental shelf, J. Phys. Oceanogr., 30, 2049-2054, doi: https://doi.org/10.1175/1520-0485(2000)030%3C2049:TIDAMA%3E2.0.CO;2, 2000 (J.N. Moum and J.D. Nash).